LabView Tetris – A tutorial and GUI example

Sept 8, 2005

Sheldon D. Stokes

stokes@quadesl.com
http://quadesl.com
[image: image1.png]
It may seem odd to write, then expect others to examine, a game as a means to understand the subtleties of Labview programming and GUI application design. However a user driven game is an ideal subject for understanding and modeling many real-world processes. For example in game of tetris, there is a regular timed event that must be handled; that is the block dropping. The block should fall at consistently timed intervals no matter what else is going on. This is very similar to grabbing data from a data acquisition card, or serial link to another instrument. The user events, here represented by keyboard inputs, occur at random intervals and must be handled in a time critical manner or the user experience will not be good. These random events can be thought of as errors or seldom occurring conditions from a data acquisition and control application. So, the game implementation consists of several different types of tasks that need to be handled, both have different requirements and tests for handling these tasks. The tests that occur after the task has been started, could be data valid tests, or checks on other parts of the system in an acquisition or control application.

Behind the scenes is a block of code to handle the tasks, perform the tests and draw the screen. The screen drawing could be replaced by data file writes in an application for example. This block of code can be thought of an engine that does all the work as requested from other parts of the code that are requesting that work being done.

[image: image2.png]
Shown above is the block diagram. It consists of three loops which will run as separate threads. The top loop is a timed loop which is responsible for consistent block drop commands. The middle loop is the user interface event structure. This converts user keyboard events and sends those commands to the state machine. The bottom loop is a state machine that does all the heavy lifting. The three loops communicate via a task queue. Items are pushed onto the queue in the timed loop and user loop, and those items are popped off the queue by the state machine. The meat of the discussion will be in the state machine, but to get things started, lets discuss the state driving loops.

The top loop is quite simple. This loop adds three items are “movedown”, “test”, and “drawboard” to the task queue. The loop then waits “wait mS” milliseconds. The loop checks to see if the queue exists and it if it does, it repeats. So as long as the queue exists, it continues to add three tasks to the queue, then waits.

The middle loop is also similarly simple. The core of the loop is an event structure, which is triggered at each key press. The key scancode is returned and the corresponding task is added to the task queue. As long as the task queue exists the loop continues and the event structure continues to listen for key presses. There are two different sets of key scancodes for each action. The scancodes for Windows intel based PC’s are different than Macintosh computers. I did not have a Linux OS and LabView to see if the scancodes are different on that OS.

The bottom loop is a state machine. A state machine is essentially a case structure inside a loop. Values are passed through the loop iterations via shift registers. Each case is a “state” and in this implementation the state is defined from the top element in the Queue. The power of the state machine is that any one state can command the next state by pushing the next state onto the queue. For example, moving a piece to the right, causes the state machine to “test” then to draw the board with a ‘drawboard” task. The state generator has the following tasks:

· end

· create

· test

· changeboard

· drawboard

· delrows

· changetime

· changescore

· movedown

· pause

· right

· left

· rot

· drop

The board is a two dimensional grid of points where the origin is the upper left. The board is 10 cells wide and 20 cells deep. Each block of each piece is an entry in either the piece array, or the stack array. The piece array contains the active falling piece, the stack array is all the blocks in the well. When “test” says that the active piece has touched the stack, the contents of the piece array is added to the stack array. The stack array is then checked for complete rows, and those completed rows are removed from the stack array. The entries with a “Y” value less than the removed row have their “Y” value incremented effecting dropping them down one. The format of the each block in the well, and this in the piece or stack array has the format of: (x position, y position, color). Thus the piece and stack arrays are a 2D array. The origin is at the top left to match the origin of the picture and graphics routines. So as the block falls, it’s y value is incrementing. Moving the block to the right is equivalent to incrementing the “X” value.

